Matrix-Vector Multiplication via Erasure Decoding

نویسنده

  • Peter Trifonov
چکیده

The problem of fast evaluation of a matrix-vector product over GF (2) is considered. The problem is reduced to erasure decoding of a linear error-correcting code. A large set of redundant parity check equations for this code is generated. The multiplication algorithm is derived by tracking the execution of the message-passing algorithm on the obtained set of parity check equations. The obtained algorithms outperform the classical ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple-star: a Coding Scheme with Optimal Encoding Complexity for Tolerating Triple Disk Failures in Raid

Low encoding/decoding complexity is essential for practical storage systems. This paper presents a new Maximum Distance Separable (MDS) array codes, called Triple-Star, for tolerating triple disk failures in Redundant Arrays of Inexpensive Disks (RAID) architecture. Triple-Star is an extension of the double-erasure-correcting Rotarycode and a modification of the generalized triple-erasure-corre...

متن کامل

On Erasure Decoding of AG-codes

We present a scheme for erasure decoding of AG-codes of complexity O(n2). This improves on methods involving Fourier transforms. The trivial scheme for erasure decoding of AG-codes (Algebraic Geometry codes in full, or Geometric Goppa codes) solves a system of linear equations. The scheme is of complexity O(n), where n denotes the codelength. Fast schemes, that use a Fourier transform of all sy...

متن کامل

Decoding Hidden Markov Models Faster Than Viterbi Via Online Matrix-Vector (max, +)-Multiplication

In this paper, we present a novel algorithm for the maximum a posteriori decoding (MAPD) of timehomogeneous Hidden Markov Models (HMM), improving the worst-case running time of the classical Viterbi algorithm by a logarithmic factor. In our approach, we interpret the Viterbi algorithm as a repeated computation of matrix-vector (max,+)multiplications. On time-homogeneous HMMs, this computation i...

متن کامل

New Two-Stage Automorphism Group Decoders for Cyclic Codes in the Erasure Channel

Recently, error correcting codes in the erasure channel have drawn great attention for various applications such as distributed storage systems and wireless sensor networks, but many of their decoding algorithms are not practical because they have higher decoding complexity and longer delay. Thus, the automorphism group decoder (AGD) for cyclic codes in the erasure channel was introduced, which...

متن کامل

Sudocodes – Fast Measurement and Reconstruction of Sparse Signals

Sudocodes are a new scheme for lossless compressive sampling and reconstruction of sparse signals. Consider a sparse signal x ∈ R containing only K N non-zero values. Sudo-encoding computes the codeword y ∈ R via the linear matrix-vector multiplication y = Φx, with K < M N . We propose a non-adaptive construction of a sparse Φ comprising only the values 0 and 1; hence the computation of y invol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007